Removing outliers by minimizing the sum of infeasibilities

نویسندگان

  • Hyunjung Lee
  • Yongduek Seo
  • Sang Wook Lee
چکیده

This paper shows that we can classify latent outliers efficiently through the process of minimizing the sum of infeasibilities (SOI). The SOI minimization has been developed in the area of convex optimization to find an initial solution, solve a feasibility problem, or check out some inconsistent constraints. It was also adopted recently as an approximation method to minimize a robust error function under the framework of the L1 norm minimization for geometric vision problems. In this paper, we show that the SOI minimization is practically effective in collecting outliers when it is applied to geometric vision problems. In particular, this method is useful in structure and motion reconstruction where methods such as RANSAC are not applicable. We demonstrate the effectiveness of the method through experiments with synthetic and real data sets. 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of outliers of evaluation scores among school of health instructors using outlier - determination indices

Introduction: Teacher evaluation, as an important strategyfor improving the quality of education, has been considered byuniversities and leads to a better understanding of the strengthsand weaknesses of education. Analysis of instructors’ scoresis one of the main fields of educational research. Since outliersaffect analysis and interpretation of information processes bothstructurally and concep...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Outlier Detection by Boosting Regression Trees

A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...

متن کامل

A comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times

In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...

متن کامل

Counting and Correcting Thermodynamically Infeasible Flux Cycles in Genome-Scale Metabolic Networks

Thermodynamics constrains the flow of matter in a reaction network to occur through routes along which the Gibbs energy decreases, implying that viable steady-state flux patterns should be void of closed reaction cycles. Identifying and removing cycles in large reaction networks can unfortunately be a highly challenging task from a computational viewpoint. We propose here a method that accompli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Image Vision Comput.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2010